Nombre: \qquad
Viernes 15-02-2019

Resuelva en el espacio dado lo que se indica justificando sus respuestas con un procedimiento matemático claro y válido. Sólo está permitido el uso de lápiz, borrador y sacapuntas (o puntillas).

1. (0.5 pts) Calcule la siguiente suma:
a) $S 1=\sum_{k=1}^{4}\left(k^{3}-k^{2}+2 k-3\right)=\left(\frac{n(n+1)}{2}\right)^{2}-\frac{n(n+1)(2 n+1)}{6}+2\left(\frac{n(n n)}{2}\right)-3 n=100-30+20-12=78$
b) $S 2=\sum_{k=0}^{4}(-1 / 2)^{k-2}=\left(-\frac{1}{2}\right)^{0-2}+\left(-\frac{1}{2}\right)^{1-2}+\left(-\frac{1}{2}\right)^{2-2}+\left(-\frac{1}{2}\right)^{3-2}+\left(-\frac{1}{2}\right)^{n-2}=\left(-\frac{1}{2}\right)^{-2}+\left(-\frac{1}{2}\right)^{-1}+\left(-\frac{1}{2}\right)^{2}+(-1)^{2}-\left(-\frac{1}{1}\right)^{2}$
$S_{2}=(-2)^{2}+(-2)^{\prime}+1+\left(-\frac{1}{2}\right)^{\prime}+\left(-\frac{1}{6}\right)^{2}=y-2+1-\frac{1}{2}+\frac{1}{4}=3-\frac{1}{4}=\frac{11}{4}$
2. $\left(0.5\right.$ pts) Sea $\int_{-1}^{2}\left(x^{2}+3 x-1\right) d x$. Halle a
de $x^{2}+3 x-1 \operatorname{ten}[-1,2]$.
de $x^{2}+3 x-1$ en $[-1,2]$. Nota $f(x)=\int_{-1}^{2} f(x) d x \quad 3 x-1$
$b-a) f($
$b(a)$

$$
\int_{-1}^{2}\left(x^{2}+3 x-1\right) d x=\left.\left(\frac{x^{3}}{3}+\frac{3 x^{2}}{2}-x\right)\right|_{-1} ^{2}=\left(\frac{8}{3}+6-2\right)-\left(-\frac{1}{3}+\frac{3}{2}+1\right)=3+6-2-\frac{3}{2}-1=6-\frac{1}{2}=\frac{9}{2}
$$

$$
\begin{array}{r}
((2)-(-1)) f(z)=\frac{9}{2} \quad \therefore 3 f(z)=\frac{9}{2} \therefore f(z)=\frac{9}{2(3)} 00 f(z)=\frac{3}{2} /(b) \\
\text { Para a) } f(z)=z^{2}+3 z-1 \quad \therefore z^{2}+3 z-1=\frac{3}{2} \therefore z^{2}+3 z-\frac{5}{2}=0 \\
z=\frac{\left.-3 \pm \sqrt{(3)^{2}-4(1)\left(-\frac{5}{2}\right)}\right)}{2(1)}=\frac{-3 \pm \sqrt{9+10}}{2}=\frac{-3 \pm \sqrt{19})}{2} \\
\text { 3. (1 pts c/u) Evalué la integral indicada: }
\end{array}
$$

$$
A=\int\left(2 x^{-3}+\frac{3}{x^{2}}-2 x^{2}-\sqrt[4]{x^{3}}+\frac{2}{\sqrt[5]{x^{4}}}+\frac{4}{x^{-3}}\right) d x
$$

$$
A=\int\left(2 x^{-3}+3 x^{-2}-2 x^{2}-x^{3 / 4}+2 x^{-4 / 5}+4 x^{3}\right) d x=
$$

$$
A=J\left(2 x+3 x-2 x^{2}-x^{-4 / 4}+2 x^{-1 / 5}+4 x^{3}\right) d x=0
$$

$$
\begin{aligned}
& B=\int\left(y+y^{-1}\right)^{2} d y \\
B= & \int\left(y^{2}+2(y)\left(y^{-1}\right)+y^{-2}\right) d y=\int\left(y^{2}+2+y^{-2}\right) d y=\frac{y^{3}}{3}+2 y+\frac{y^{-1}}{-1}=\frac{1}{3} y^{3}+2 y-\frac{1}{y}+c
\end{aligned}
$$

$$
c=\int_{1}^{1} 3 x^{7}\left(x^{2}-x\right)^{2 / 3} d x=0
$$

$$
\begin{aligned}
& c=\int_{1}^{1} 3 x^{7}\left(x^{2}-x\right)^{2 / 3} d x=0 \\
& \int_{a}^{a} f(x) d x=\left.F(x)\right|_{a} ^{a}=F(a)-F(a)=0 \quad \text { Sustificación }
\end{aligned}
$$

$$
\begin{aligned}
& D=\int \frac{\sqrt[4]{1-v^{-1}}}{v^{2}} d v=\int \frac{m^{1 / 4}}{{y^{2}}^{2}} v^{2} d m=\frac{m^{5 / 4}}{\frac{5}{4}}=\frac{4}{5}\left(1-v^{-1}\right)^{5 / 4}+c \\
& \begin{array}{l}
m=1-v \\
d m=+v^{-2} d v=\frac{1}{v^{2}} d v
\end{array} \\
& E=\int_{1}^{9} \sqrt{2 r+7} d r=\int_{r=1}^{r=9} R^{1 / 2}\left(\frac{1}{2}\right) d R=\left.\frac{1}{2} \frac{R^{3 / 2}}{3 / 2}\right|_{r=1} ^{r=9}=\left.\frac{1}{3}(2 r+7)^{3 / 2}\right|_{1} ^{9} \\
& \begin{array}{ll}
R=2 r+7 & E=\frac{1}{3}(2(9)+7)^{3 / 2}-\frac{1}{3}(2(1)+7)^{3 / 2}=\frac{1}{3}(25)^{3 / 2}-\frac{1}{3}(9)^{3 / 2}=\frac{125}{3}-\frac{27}{3}=\frac{98}{3} \\
d R=2 d r
\end{array} \\
& E=98 / 3 / \\
& F=\int_{0}^{1} \frac{z^{2}}{\left(1+z^{3}\right)^{2}} d z=\int_{z=0}^{1} \frac{z^{2}}{u^{2}} \frac{1}{3 z^{2}} d u=\frac{1}{3} \int_{z=0}^{z=1} u^{-2} d u=\left.\frac{1}{3} \frac{v^{-1}}{-1}\right|_{z=0} ^{z=1}=-\left.\frac{1}{3\left(1+z^{3}\right)}\right|_{0} ^{1} \\
& \begin{array}{l}
u=1+z^{3} \\
d u=3 z^{2} d z
\end{array} \quad F=\left[-\frac{1}{3\left(1+(1)^{3}\right)}\right]-\left[\frac{-1}{3\left(1+0^{3}\right)}\right]=-\frac{1}{6}+\frac{1}{3}=\frac{1}{6} \\
& G=\int_{1}^{2} \frac{s^{2}+2}{s^{2}} d s=\int_{1}^{2}\left(\frac{s^{2}}{s^{2}}+\frac{2}{s^{2}}\right) d s=\int_{1}^{2}\left(1+2 s^{-2}\right) d s=\left.\left(s+\frac{2 s^{-1}}{-1}\right)\right|_{1} ^{2} \\
& G=\left.\left(s-\frac{2}{s}\right)\right|_{1} ^{2}=\left(2-\frac{2}{2}\right)-\left(1-\frac{2}{1}\right)=2-1-1+2=2 \\
& \begin{array}{l}
H=\frac{d}{d z} \int_{3}^{z^{3}}\left(x^{2}+1\right)^{10} d x=\frac{d}{d z}\left(\left.F(x)\right|_{3} ^{z^{3}}\right)=\frac{d}{d z}\left(\underset{\text { Reglade la cadena }}{\left(F\left(z^{3}\right)\right.} \underset{\substack{\text { cte }}}{F(x)=\left(x^{2}+1\right)^{10}}\right)=f\left(z^{3}\right) \frac{d}{d z} z^{3}-0
\end{array} \\
& H=\left(\left(z^{3}\right)^{2}+1\right)^{10}\left(3 z^{2}\right)=3 z^{2}\left(z^{6}+1\right)^{10} \\
& I=\int_{0}^{7} \frac{d}{d x}\left(\frac{x^{2}}{\sqrt{3 x+4}}\right) d x=\left.\frac{x^{2}}{\sqrt{3 x+4}}\right|_{0} ^{7}=\frac{7^{2}}{\sqrt{(7)+4)}}-\frac{0^{2} 7^{0}}{\sqrt{(3(0)+4}}=\frac{49}{5} \\
& \int \frac{d}{d x}(a \operatorname{lgo}) d x=a \operatorname{lgo}+c
\end{aligned}
$$

